Our website uses cookies to improve your online experience. By continuing to use our website you consent to cookies being used according to our Privacy Policy.

OK
Outvise
  • Login as Freelancer Login as Client Signup...
  • Home Features Blog
  • Home
  • Features
  • Blog
  • Signup
  • Login
    Login as Freelancer Login as Client Signup...

Not already a member of the largest TMD experts network?

Sign up takes 1 minute

Sign up for an EXPERT account
if you want to offer your
services as Freelancer

Expert Signup

Sign up for an CLIENT account to
start posting Job requests and
source Top talent on demand

Client Signup
Back to wall
  • Expert to Expert

Is the reason so many companies fail to capitalize on data science and machine learning because of a lack in talent or because the business does not spend enough time understanding its value?

R
Robert T.
Created 25/09/2019
10 replies
H
Hafiz
1 year ago

The major reason, in my view, is that business does not give it the due recognition and does not ‘wish’ to understand its own data

2
Marcel
1 year ago

it starts with Analysts which are to “lazy” to write UDFs (use technology at all its usage/possibilities) and as mentioned think that they don’t need to know about every attribute in the tables of accessible DBs. Then data/accessibility is a huge issue and there we are on the responsibility of the management. Project manager without knowledge and interest in DS/ETL/data makes the projects fail. If you are not forcing any decisions to establish new data access, technologies and processes neither DS nor the company with get any bit ahead.

1
M
Mohammed
1 year ago

one of the main reason is the country that you are if there is not organization to record data managment e.g. patiant in and out this will be obsticale to bring data to analysze , if the government can funding to make this happned, this will make task so easy to open this industry and make it compatitive.

1
Ayham
1 year ago

In my opinion
Talent is exist but companies do not understand the value
In my work little companies know the difference between visions and strategies
They analyse data to solve temporary problems
I think when we work in this job we got solutions for every thing in the end of work.

1
Luis Salta
1 year ago

There are tools to understand and capitalize on data volume and real-time analysis capabilities, but it takes human knowledge and dedicated time of team’s to transform data (even if already in KPI’s) into real usage outputs (either conclusions, trends, profiling, and strategic data). So, yes time and usually human resources.

1
C
Carl
1 year ago

A lot of telcos have outsourced different parts of their network and IT infrastructure, which makes is practically difficult to pull together data. There is also still silo mentalities inside the operator which in turn prohibits cross dept collaboration. I would also want to add that the implementation of solutions over time can in itself make it very difficult to get the right data, clean it sufficiently well to get value out of it. Historically, and my final comment is that the graveyard of failed IT/OSS/BSS implementations is large, so a CFO/CEO would have the right to be skeptical about the ability to succeed.

2
Rafael
1 year ago

You need to create transversal teams to deal with so innovative and complex projects. Try Agile team working (sqdas, etc…) . All the same be sure that data is really accessible; sometimes data systems are not prepared.Finally avoid proof of concepts: go directly to cases into production even if the scope is less ambitious.

1
Andy
1 year ago

In my opinion it’s mainly the following reasons:
- data stuck in legacy systems, often in silos
- to little management attention / willingness to invest
- real data experts rare
- lack of exiting and proven use cases

1
R
Robert T.
1 year ago

Thank you all. I also see that enterprises and their employees are not AI / ML ready.

0
John
1 year ago

Its a mix of things but in my experience boils down to companies not being clear on what data to use and for what purpose and not having or engaging the right staff or support to deliver a functional solution. It will come in time and in an incremental way rather than a big bang approach for most organisations.

0

Do you want to add something?

Haven't found a solution?

Add your own question

This will mark this comment as best reply and close your question.

Are you sure?

This will close your question without a Best reply.

Are you sure?

This will report this content as inappropiate to the moderators.

Are you sure?